The Discrete Linear Chirp Transform and Its Applications
نویسندگان
چکیده
منابع مشابه
A general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کاملConstruction of Sparse Representations of Perfect Polyphase Sequences in Zak Space with Applications to Radar and Communications
Sparse representations of sequences facilitate signal processing tasks in many radar, sonar, communications, and information hiding applications. Previously, conditions for the construction of a compactly supported finite Zak transform of the linear FM chirp were investigated. It was shown that the discrete Fourier transform of a chirp is, essentially, a chirp, with support similar to the suppo...
متن کاملDiscrete chirp-Fourier transform and its application to chirp rate estimation
The discrete Fourier transform (DFT) has found tremendous applications in almost all fields, mainly because it can be used to match the multiple frequencies of a stationary signal with multiple harmonics. In many applications, wideband and nonstationary signals, however, often occur. One of the typical examples of such signals is chirp-type signals that are usually encountered in radar signal p...
متن کاملA fast algorithm for the linear canonical transform
In recent years there has been a renewed interest in finding fast algorithms to compute accurately the linear canonical transform (LCT) of a given function. This is driven by the large number of applications of the LCT in optics and signal processing. The well-known integral transforms: Fourier, fractional Fourier, bilateral Laplace and Fresnel transforms are special cases of the LCT. In this p...
متن کاملSampling Rate Conversion in the Discrete Linear Canonical Transform Domain
Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013